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Expressions are derived for the dielectric and mechanical base relaxation times of a polymer above its glass 
transition temperature. Coupled oscillator theory is invoked to show that a low-frequency dielectric 
relaxation should have a relaxation time proportional to the degree of polymerization, N. A damped linear 
array is used to calculate the base mechanical relaxation time, Tp. The principles of intermolecular forces and 
dielectric energy dissipation are taken from previous work of the author in order to model the frictional drag 
and elastic constants required by the equation of motion of the damped linear array. The relaxation time t 0 is 
shown to be proportional to N 3"33. Finally, ~p is used to develop the relation between zero-shear viscosity and 
molecular weight for a polymer melt, with polystyrene used as an example. 
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I N T R O D U C T I O N  

A series of recent papers l - a  have proposed two 
fundamental mechanisms that can be used to explain and 
predict the viscoelastic properties of a polymer. The first 
proposal is that all the physical properties of a polymer 
are a direct consequence of intermolecular forces between 
monomeric units or between polymer macromolecules, 
with particular emphasis upon the replacement of 
statistical concepts to explain the elastic modulus of a 
polymer above its Tg. The second proposal is that 
mechanical energy is dissipated dielectrically during the 
relative motion of polymer molecules. 

The author has suggested 3 that the above two 
mechanisms could be applied to the equations of motion 
of the monomeric units within a damped lattice of a 
polymer macromolecule. This suggestion will be 
developed in this paper, but first a more advanced model 
for the dielectric relaxation times of a polymer at high 
temperatures and low frequencies must be found in order 
to apply the dielectric dissipation hypothesis. 

DIELECTRIC RELAXATION TIME 

A suggestion of Frrl ich has been developed 2 into a 
relation between the dielectric relaxation time, Zm, of the 
monomer units in a polymer chain and the relaxation 
time of a free monomer unit, z0, in terms of the depth of 
the potential well of interaction between two monomer 
units, $o, a temperature characteristic of the backbone 
chemical bond, T~, and Boltzmann's constant, k: 

(1) 

As more mer units are added to the backbone chain, it 
would seem appropriate to assume that the sum of these 
strong interactions down the length of the chain should 
follow the theories for coupled electrical oscillators 4. Thus 
the base relaxation time, zN, of a chain of N units with 

N >> 1 becomes: 

T N = ( N T m / ~ )  (2)  

Coupled oscillation theory indicates that the full 
dielectric power of each mer-unit dipole will only be 
visible at low frequencies, v~-l/zN, and that the 
monomeric peak of dielectric loss constant, e", should 
increase with decreased interaction energy coupling at 
higher temperatures above T,. Both these trends are seen 
in the work of Ishida and coworkers s on the dielectric 
response of poly(acrylonitrile): Figure I shows their data 
for e" at two temperatures for a molecular weight of 
99 000. The broken curves are the predictions of equation 
(2) for the low-frequency relaxation relative to the 
observed values of Tin. The peak height of the predicted 
curves uses the full dipole moment of acrylonitrile 
(1.3 x 10- 29 C m) in the Onsager equation for dielectric 
constants 6, which gives an expected peak height of 
e"= 14. 

Low-frequency tails in e" at high temperatures, of the 
kind shown in Figure 1, have been observed consistently 
in these laboratories, but attempts to extend the lower- 
frequency range into a region around the peak at 1/zN 
have so far been unsuccessful. 

MECHANICAL RELAXATION 

The distribution of mechanical relaxation times in a 
polymer above its glass transition temperature, T~, can be 
derived from damped lattice theories, as discussed by 
Tobolsky 7. The simplest of such theories is that of a 
damped linear array of N mer units in the x direction: 

mS~ + f& + CmAX = 0 (3) 

where each mer unit has a mass, m, a frictional drag force 
per unit velocity, f ,  and a linear spring constant, Cm, 
between adjacent mer units that move by a distance, Ax, 
from their equilibrium position. 
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Figure 1 Dielectric loss constant, e", for poly(acrylonitrile) as a 
function of frequency, v, at two temperatures, 130 and 153°C. Full 
curves and points are from the data of Ishida and coworkers 5. Broken 
curves are predicted by equation (2) 

The solution of equation (3) under non-inertial 
conditions gives a base relaxation time, rp: 

f N 2 
Zp = 2 ~ 2 C  m (4) 

The terms f and Cm for the monomer units must now be 
calculated. 

Unit frictional drag 
In a linear shear field, the author suggests an 

appropriate expression for the frictional drag force, f, 
between adjacent non-chemically bonded mer-units: 

f=rlrn(r~/2)R m (5) 

Here, t~m is the intrinsic viscosity of each mer unit in its 
own environment and R m is the radius of a mer unit. 

By combining equations (5) and (2) with the viscosity 
expressions derived previously I in terms of the surface 

free energy of a polymer melt, Sp, and the static and high- 
frequency values of the dielectric constant, es and ei, 
respectively, we obtain: 

f = ~ S p ~ z m N  (6)  

Spring constant 
An expression can be derived 3 for the spring constant, 

Cp, of a macromolecule in terms of its radius, Rp, and the 
energy of interaction between two macromolecules, ~: 

Cp=O2cb/OR~ (7) 

The tension in the macromolecular spring must be the 
product of this spring constant and the sum of all the 
monomeric unit deformations. For spherical macro- 
molecules with a radius proportional to N 1/3 this gives: 

C m = CpN 1/3 (8)  

Combining equations (7) and (8) and using a Lennard- 
Jones potential function for q~ in terms of Rp, the radius at 
absolute zero of temperature, R 0, and the depth of the 
interaction potential well, ~bo, we obtain: 

_ 12~bo [7(Ro'~6_13(Ro)'2 ] 
Cm N'/aR2m L \RpJ \RpJ (9) 

Base relaxation time, zp 
Equations (6) and (9) can be substituted into equation 

(4) to yield an expression for %, which shows a 
dependence of Zp upon N to the power 3.33. 

Typical values of the equation parameters are 
illustrated by the example 1-3 of polystyrene at 
T = 490 K: Sp = 0.024 J m-  2, ~b o = 1.75 × 10- 20 j ,  
T~=323K, % = 3 . 4 ×  10 -11s, R m = 3 . 1 x l 0 - 1 ° m  and 
(es-ei)/(esei)l/2=0.013. These values give: 

f = 3 . 5  x 10-11N 

Cm= 1.1N -1/a 

Zp= 1.6 x 10-X2N 3"aa 

A general expression for rp in a polystyrene melt is in 
agreement with the empirical expression quoted 
previously 3 from stress-relaxation modulus experiments: 

15 3 33 / /  1 2 3 6  "~ 
Z p , ~ 1 0 -  N "  e x p [ ~ )  (10) 

Equation (10) uses the parameter values for a typical melt 
temperature of 490 K given above, and assumes that the 
main temperature dependence comes from the 
exponential term in Zm, given in equation (1). 

VISCOSITY 

The deformation of a polymer macromolecule under 
shear must be dominated by the relative magnitude of the 
frictional drag forces and the elastic reaction forces on 
each mer unit of the damped lattice. 

Equations (6) and (9) show that frictional drag 
increases and elastic reaction decreases with increasing 
value of N. Let a value N c be defined as a value of N below 
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Fig,re 2 
polystyrene at T=490 K. Full lines are predicted by equations (12) and 
(14). Broken lines are from experimental data of Fox and coworkers s. 
Points are experimental reference points generated internally 
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Viscosity, r/o , as a function of molecular weight, M for 

which polymer macromolecules remain as undistorted 
spheres under shear, and above which the spheres are 
increasingly distorted to the shape of a prolate ellipsoid 1. 
The non-inertial damped lattice model of this report can 
be applied only for N>N¢. Below No, each 
macromolecule must be considered as a discrete unit, and 
the viscosity equations for a simple fluid must be 
applied1 : 

Sp 8 s - 8  i (11) 
11 ='~m (13sl3i) I :2 TmN 

For example, polystyrene at T=490 K and below Nc 
gives: 

r/=0.05N (12) 

Relaxation times and intermolecular forces: D. Porter 

Above No, the zero-shear viscosity, r/0, is related to the 
plateau modulus, Go: 

r/0 = Goz p (13) 

Using polystyrene at 490 K again, with a value for the 
plateau modulus of Go = 10 ~ N m -  2, we obtain: 

r/o= 1.5 x 10-7N 3"33 (14) 

Equations (12) and (14) are plotted in Figure 2 as zero- 
shear viscosity as a function of molecular weight for 
polystyrene at T = 4 9 0 K .  The data of Fox and 
coworkers s are plotted as broken lines, and some 
experimental data points for a polystyrene of narrow 
molecular-weight distribution, generated within Dow 
Chemical, have been included for reference. Agreement 
between prediction and experiment is seen to be good. 

The value ofr/o from equation (13) can now be used to 
predict the shear-dependent viscosity, ~/, at a shear rate 
for spherical macromolecules being deformed from a 
radius Rp to a prolate ellipsoid form with a long-axis 
radius of R e (ref. 1), which was derived previously using 
empirical data for macromolecular interactions: 

and 

tl = tlo(Rp/RJ 3 (15) 

~1~' = Go[ ( R J R p ) -  1] (16) 

Applying equations (13) and (15) to equation (16), we 
obtain: 

• I/Re~31/R¢-l) (17) 

which can be used with equation (15) to predict ~7. 

DISCUSSION 

The damped linear array of this report should, perhaps, 
be replaced by a more general three-dimensional Debye 
lattice• However, the success of this simple model may be 
due to the physical model of a collapsed coil chain, of 
length proportional to N, being confined within a sphere 
of radius proportional to N 1/3. Thus, the direction x used 
in the equation of motion would always be parallel to the 
chain backbone, and the deformation in x would, in fact, 
be shear deformations of adjacent chains within a 
macromolecule. 

The simplistic physical model given above reflects the 
conviction of the author that the entanglement 
hypothesis need not be invoked to explain the change in 
gradient of the viscosity curve, seen in Figure 2. Thus, the 
Nc of this model, which is due to a deformation of discrete 
macromolecules, can replace the entanglement molecular 
weight, Mc (ref. 9). 

The next step in this work is to show that the 
deformation of discrete polymer macromolecules can 
predict the plateau value of elastic modulus, Go, of a 
polymer above its Tg as a function of both molecular 
weight and rate of deformation. This will involve a 
balance between the reduced degree of interaction 
between macromolecules in their direction of extension 
and increased interaction normal to this direction, the 
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balance being both molecular-weight and deformation- 
rate dependent. 

C O N C L U S I O N S  

Coupled electrical oscillator theory indicates that a low- 
frequency dielectric relaxation process can be expected in 
a polymer, with a relaxation time proportional to the 
degree of polymerization, N. 

The N constituent mer units of a polymer 
macromolecule have been modelled as a damped linear 
array in order to calculate their base mechanical 
relaxation time, ~p. The frictional drag factor of the 
equation of motion of a mer unit can be calculated from 
the principle of dielectric energy dissipation, and the 
elastic term by application of intermolecular force theory. 
For  N ~> 1, % is proportional to N 3'33, and the application 
of expressions for % to calculate polymer melt viscosity 
are in good agreement with experimental data for 
polystyrene. 
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